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The scattering of plane waves and of point source pulses by irregularities 
in a discrete lattice model of the Schr6dinger equation is considered. 
Closed form expressions are derived for the scattered wave function in 
terms of lattice Green's functions in the case that a finite number of lattice 
points or " b o n d s "  are defective. The scattered wave function appears in 
the form of the ratio of two determinants. While in continuum scattering 
theory the scatterer must have some symmetry, perhaps spherical, cylindrical 
or elliptical, in order to allow separation of variables in the basic scattering 
differential equation, such symmetries are not necessary for the construction 
of scattered wave functions on discrete lattices. When the number of 
irregularities becomes large, the determinants in the solution of the scatter- 
ing problem become large. 
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1. I N T R O D U C T I O N  

Waves propagating in a medium are scattered by irregularities in that medium. 
Thus waves of sound, light, neutrons, and electrons are scattered by density 
fluctuations in condensed phases of matter; electromagnetic waves are 
scattered by electron density fluctuations in the ionosphere; protons and 
electrons are scattered by atomic nuclei, etc. The pattern of the scattered 
wave provides one of the most important bits of information for the deduction 
of the nature of the irregularity. Unfortunately, in few cases has the scattering 
theory been developed and presented sufficiently dearly and precisely so that 
an accurate analysis of the scattering process can be easily made. Even in 
one of those few cases in which a scattering problem is solved "exactly," 
the Mie theory of scattering of an electromagnetic wave by a uniform sphere, 
the final analysis of the exact formulas may become a tremendous tour de 
force, as is witnessed in the outstanding papers of Nussenzveig. (1) 

Through some experience in investigating the wave propagation in 
discrete media such as crystal lattices (2-4~ it has been noticed that while free 
"particle" propagators are more complicated on lattices, the scattering 
formulas become simpler and easier to interpret. The reason for this is that 
on a lattice the approach to and retreat from the surface of a defect region 
can be made in only a limited number of directions. Internal reflections in the 
defect regions are easier to characterize. In the case of a finite number of 
defect points in a discrete medium the full scattering problem can be reduced 
to the solution of a number of linear algebraic equations which is of the 
order of the number of defect points. 

The aim of this paper is to derive relatively simple dosed form expres- 
sions, usually in the form of determinants, for scattered wave functions in 
irregular discrete media. These formulas will later be used in other reports to 
generate, in a concise way, scattering patterns resulting from a wide variety 
of irregularities. While most real scatterers of interest are continuous, it will 
be found that many qualitative features of scattering processes can be deduced 
more easily from discrete models. All formulas will be expressed in terms of 
lattice Green's functions, quantities which have been the subject of a number 
of recent investigations. (1~ 

This paper is an exposition of the general method of deriving the basic 
formulas which will be used later for detailed analyses. It will not be developed 
in terms of any specific physical problem of interest but rather in terms of a 
simple prototype model which will be chosen to be the discrete analog of the 
Schrrdinger equation so that the scattering theory will be the analog of 
quantum mechanical scattering by a potential. However, we shall also consider 
the case of several disconnected scattering regions so that formulas for 
interference patterns of several separated scattering centers can be discussed. 
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While the standard theories of  scattering emphasize the scattering of  
plane waves, we will begin our presentation with the scattering of a point 
source instantaneous pulse by an irregularity since the mathematics of this 
problem is almost identical with that already used to study the effect of  defects 
on the random walk of a walker on a lattice. (5'6) We will then proceed with a 
discussion of scattering of plane waves by lattice defects. 

2. A DISCRETE M O D E L  S I M I L A R  TO N O N R E L A T I V I S T I C  
Q U A N T U M  T H E O R Y  

We devote this section to the characterization of our empty discrete 
lattice space. Consider first a classical random walk on a one-dimensional 
continuum without defects. Let P ( x ,  t )  be the probability distribution func- 
tion for the location of a walker. This.function is nonnegative and normalized 
to unity. The transition probability p(x ,  r) for a displacement from x0 to x 
in a time r gives the relation between P ( x ,  t + -r) and P ( x o ,  t): 

f? P ( x ,  t + r) = p ( x  - Xo; T)P(xo,  t )  dxo (1) 
oo 

Let us suppose that at some intermediate time �9 < ~-" < t the walker goes 
through some point xz; then 

and 

f 
oo 

P ( x x ,  -r") = p ( x l  - Xo ; T" -- t )P(Xo,  t)  dxo 
- -  o 0  

P ( x ,  t + -r) = p ( x  - x l ,  t + .r - z")P(xl,  ~-") dxl  

= p ( x - x l ,  t +  r -  
cO 0 9  

• p ( x ~  - x0, ~" - t ) P ( x 0 ,  t )  dx~ aXo (2)  

Hence if we compare (1) and (2), with ~-' - (r" - t), we obtain the well- 
known Chapman-Kolmogoroff-Smoluchowski chain condition, which was 
actually first discussed by Bachelier in 1900 in his Ph.D. thesis (on the stock 
market and directed by Poincar6). 

;? p ( x  - Xo; ~) = p ( x  - x~ ,  ~ - - / ) p ( x l  - x o ,  , ' )  d x l  (3) 
09 

The quantum mechanical analog of (1) is the equation that relates a 
wave function ~b(x, t + r) to ~b(Xo, t) through the propagator K ( x ,  t): 

f; ~b(x, t + r) = K ( x  - Xo; r)~b(xo, t) dxo (4) 
oo 
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It is easy to see that the propagator (7) also satisfies the chain condition 

K ( x  - Xo; ~) = K ( x  - x l ,  �9 - . ' ) K ( x l  - Xo; " 3  d x l  (5) 
o o  

as well as the unitarity condition 

f : K ( x  t)K*(x t) dx = 3(xl - xo) (6) Xo; x1 
o o  

which is necessary to preserve probability normalization in quantum theory 

Ir t + ~)12 dr = [r t)l  ~ dxo --  1 (7) 

The classical Gaussian transition probability 

f(4rrOt) -1/z exp(-xZ/4Dt),  t >i 0 
p ( x ,  t) = / ,0 ,  t < 0 (8) 

satisfies (3) and the quantum mechanical free particle propagator 

f(4~rAit) -1/2 exp(-ix2/4ht), t >i 0 
K(x, t) = ~0, t < 0 (9) 

satisfies the chain condition (5) as well as the unitarity condition (6). The 
Gauss distribution (8) is the Green's function of the diffusion equation 

Pt - DP== = 3(x)8(0 (10) 

and the propagator (9) is the Green's function of the free particle Schr6dinger 
equation 

Kt + iAKxx = 3(x) 8(0 with h = h/2m (t 1) 

Now consider a one-dimensional discrete system of N points on a ring 
(periodic boundary conditions). Let the successive points on the ring be 
denoted by 0, 1, 2 ..... N - 1 (with N - 0). Then the analog of the chain 
condition (3) becomes 

N 

p(l - /o, r) = ~ p(l - l l ,  - r  - r')p(ll - lo, r') (12) 
11=1 

with a similar analog existing to (5). The transition probability function 

1 N exp[ 7[2rrils ( ~ s ) ]  
p o ( l , t ) =  ~--~1 - 2 a t  1 - c o s - -  if t > 0 (13) 

can be shown to satisfy (12) by analyzing the right-hand side of (12): 
- N2 exp 2rri[(l Zl)sl + (11 to)s2] 

/1=1 SI=I S2=I \ N 

exp{2~[(r ' /2rrsl '  r '  cos~---~-] r ] }  (14) x - r ) cos~--~-) + [2rrs=] _ 



Scattering of Waves in Periodic Discrete Lattice Spaces 21 

Since 
N 

(I /N) ~ exp[2~rill(s2 - sl)/N] = ~1s2 
1 1 = 1  

we find that (14) becomes 
N 

( l /N) ~ exp[2~-i(l- lo)s/N] exp{-2a~-[1 - COS(2Trs/N)]} 

which is exactly (13) with t replaced by 7 as required. 
The slightly more general transition probability 

po(l, t) H(t)N_ ~ ~ [27rils ( 27rs~ ] = s = l e x p [ ~  - 2c~t 1 - cos--~-]j ,  

(15) 

- - o o  < t < o o  

(16) 
with H(t) the Heaviside step function 

i if t > 0  
H(t) = if t = 0 (17) 

if t < 0  

[with the property 8H/~t -- S(t)] satisfies a discrete Green's function equation 
analogous to (10). Let us take the derivative with respect to t: 

N 2~isl dpo(l, t) _ 3(t)U_ 1 ~ exp 
dt N S = I  

~.~exp ( [  2rri(l)7 + 1)s -2~ri(l-u 1)s) + aH(t)N-Zs= 1 2 + exp 

x e x p [ - 2 a r ( l -  c o s - ~ ) ] }  (18) 

so that 

dpo(l, t) 
dt c~[p~ + 1, t) - 2p0(l, t) + po(l - 1, t)] = 3(t)8,.0 (19) 

This is a well-known differential equation which is encountered in the theory 
of random walks on a line in which equal probabilities exist for a step to 
either the right or the left of one lattice spacing in a short time. (5) 

The discrete quantum analog of (16) is 
N 

Ko(l, t) = H(t)N -1 ~ exp{(2rdls/N) - 2i~t[1 - COS(2TrS/N)]} (20) 
S = I  

which satisfies 

�9 d K o ( l ,  t )  
+ c4Ko(/+ 1, t) - 2Ko(l, t) + Ko(l - 1, t)] = iS(t)3z,o (21) l dt 
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It also can be shown to satisfy the unitarity equation 

N 

Ko(l  - lo, t )Ko*( l  - /1, t) = 3,oZ~ (221 
/ = 1  

when t > 0. Direct substitution into the left-hand side of this equation yields 

N N N 

N -2 ~ ~ ~ exp{2~-i[(/- lo)s~ - ( l -  l~)s2]/N} 
/=I $I=I S2=I 

• exp{2iat [cos(27rsl /N)  - cos(2rrs2/N)] 

N N 

= N - 1  e x p [ 2 . i ( Z l s 2  - toS )/N] 
S1=1 S2=i 

• exp{2 i~ t [cos (2~rs l /N)  - cos(27rs2/N)] 

N 

= N -1 ~ exp[2~ri(/1 - lo)s/N] = ~i,~o 
S = I  

as required. 
Equation (21) reduces to the free particle Schr6dinger equation when 

= h / 2 m a  2, with a a lattice spacing and Ko(l, t )  interpreted to be the prop- 
agator at the point x = la. As a -+ 0, (21) becomes (11). 

The three dimensional analog of (13) on a simple cubic lattice is [with 
positions being identified by (l~, 12, l~)] 

N 

P0(l, t) = (1/U s) ~ e x p { ( 2 r r i l . s / U )  - 2at[3 - (el + c2 + ,c3)]} (23) 
$1S2S 3 = 1 

with 

c i --- c o s ( 2 ~ r s / N )  and l. s = lls~ + 12s2 + 13s3 (24) 

Similarly the analog of (20) is 

N 

Ko(l, t )  (1/N 3) ~ exp{ (2~r i l . s /N)  - 2ic, t[3 - (el + c2 + e3)]} (25) 
SlS2S 3 = 1 

In the limit as the number of lattice points N - +  ~ ,  the transition 
probability (16) becomes (setting 0 = 2rrs/N,  dO = 2Tr/N) 

po(l, t )  = (1 /2rr )H( t )  e~Z~ -2~t(~-~176176 dO 

= H ( t ) e - 2 ~ t I , ( 2 a t )  (26) 

Similarly the one-dimensional propagator (20) becomes 

Ko(l, t )  = H ( t ) e -  2~tJ~(2~t) (27) 
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where J~ is the / th  Bessel function and It is the lth Bessel function of purely 
imaginary argument. The propagator for a 3D simple cubic lattice is 

Ko(l, t) = H(t)Jz~(2~t)Jz~(2~t)J~a(2~t)e -6*"t (28) 

Our propagator K(I, t)  describes the manner in which our system 
responds to a transient point source at the origin at time t = 0. From its 
definition, the response to distributed sources which are continually operative 
is 

f ~b(l, t) = ~ K(I  - 1o, t - r)~bo(lo, r) d r  (29) 
to  - o o  

3. ON THE EFFECT OF THE I N T R O D U C T I O N  OF T R A P S  ON 
A LATTICE 

Again let us start with a consideration of a random walker in the 
neighborhood of a trap from which he cannot escape. The general rate 
equation for a Markovian process of which our random walk is an example 
is(8~ 

dPl(t)/dt = ~ p~mPm(t) -- ~ pm~P~(t) (30) 
ra m 

The constants Ptm represent probabilities per unit time of transitions from 
state m to l if a system is already in rn. Hence the usual interpretation given 
to the positive term on the right-hand side of (30) is that it gives the rate 
at which transitions are made into state l, while the negative term represents 
the rate of transitions out of state l. Hence, if a state ll is a trap, no transitions 
f r o m / i  to any other l occurs and we must set P~,zl = 0 for l r ll, so that 
generally we replacept,,~ by pl,m(1 - 8m,Z1) for all l and m and Eq. (30) would 
be changed to read 

dP~(t) 
dt ~ pl,mP,~(t) + ~,  p,~zPz(t) 

m m 

= -- ~pzmSm,tlPm(t ) + ~pmt~t,zlPl(t)  (31) 
m m 

The random walk model characterized by Eq. (19) in the last section is 
of the form (30) with 

f i l m  = a ( ~ l - m , 1  - -  2~/-m,o + ~l-m,-1) 

Hence with a trap at l = ll, (19) becomes 

ap(t, t) 
dt ~[p(l + 1, t) - 2p(l, t) + p( l  - 1, t)] 

= 8(t)St,o -- c~[St-tt,~ -- 2St& + 8z-z,,-~lp(lz, t) 
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The various coefficients of  Ko(m) in Eq. (21) with m = l, l + 1 represent 
transit ion amplitudes into and out of  various lattice points. Hence, if lattice 
point  ll is a trap, all transition amplitudes for  transitions out of  the trap are 
zero so that  the same line of  reasoning that  was applied to the derivation of  
the above equat ion applies to its quantum analog: 

dK(l ,  t) i~[K(l + 1, t)  - 2K(1, t) + K ( l  - 1, t)] 
dt 

= 3(t)82,o - h*(3~.,1+1 - 23~,, 1 + 3,.21-1)K(11, t) (32) 

The Laplace t ransform of  (32) can be taken, recalling that  

fo ~ 
fo ~ dK(l,  t)  e_Ut dt = - K ( l ,  O) + u e-UtK(l,  t) dt 

dt 

a (33) = uK(I, u) - ~82.0 

The propaga tor  K(l ,  t)  can be interpreted to represent the development  of  
an instantaneous point  source pulse generated at the origin at time t = 0. 
The evolution of  an initially dispersed source, which can be characterized by 
a wave function r 0), is given by 

r t )  = K q  - t', t ) r  0)  
I '  

We define K(I, u) to be the Laplace t ransform of  K(I, t). Then 

uK(l,  u) - ia[K(l  + 1, u) - 2K(I, u) + K(I  - 1, u)] 

= St.0 - iaK( l l ,  u)[8~,,1+1 - 28,.,1 + 8,,21-1] (34) 

We have used the equation 

o ~ 3( t )e-  " at = �89 (35) 

In a similar way it can be shown that  the unper turbed propagator  equat ion 
(32) has the Green 's  function form 

uKo(l, u) - ia[Ko(l + 1, u) - 2Ko(l, u) + Ko(l - 1, u)] = 8,,0 (36) 

It can easily be verified that  

K(I, u) = ~ {8,,o - i aK( l l ,  u)[Sval+~ - 28v,,, + 8v,,~-a]}Ko(l - l', u) 
l '  

= Ko(I, u) - i aK( l l ,  u) 

• [ K o ( / -  l~ - 1, u) - 2 K 0 ( / -  l l ,  u) + Ko(l - 11 + 1, u)] 

= Ko(l, u) - [uKo(l - l l ,  u) - 8,,,,1K(ll, u) (37) 
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Now set l = 11. Then 

K(zl, u) = KoG, u)/uKo(O, u) (38) 
When this is substituted into (37) it is found that 

tKo(l, U)Ko(O, u) - Ko(l - ll, U)go(ll, u) 
K(I,  u) = ~ - - - - -  R'0~, u) if l # ll (39) 

I.K0(ll, u)/uKo(O, u) if l = /1 

The first term in (39) (when I r ll) corresponds to the propagator in the 
absence of traps, while the second (negative) term corresponds to all paths 
that go through the trap. The difference then represents all paths that start 
at the origin and end at l without going through /1, The time-dependent 
propagator K(I, t) is obtained from (39) by taking the inverse Laplace 
transform. 

The effect of a trap on the propagation of a plane wave can be discussed 
in a similar way. We search first for a solution of (21) that, in the absence of 
a trap, would correspond to a plane wave propagating in our lattice. Suppose 
that 

r t) = exp -i(o~t - k l )  (40) 

Since r t) satisfies (21) with the delta function omitted, a dispersion 
relation exists between oJ(k) and k 

oJ(k) = 2a(1 - cos k) (41) 

In the presence of a trap our basic wave equation is [see (32) without the 
delta function on the right-hand side] 

de(l ,  t )  
dt ia[~(l + 1, t )  - 2r t) + r  1, t)] 

= --ia(3,,,1+i -- 23,& + 3t&_l)tfi(ll ,  t)  (42) 

We search for a solution of the form 

~b(l, t) = e-*~t{e ~' + F(I)} (43) 

When (43) is substituted into (42) we obtain the following equation for F( l )  
[after using (41)] 

oJF(l) + a[F(l  + 1) - 2F(/) + F(I  - 1)] 

= a[exp(ikl l)  + F(/1)](3~&+t - 23,,h + 3~,t~_1) (44) 

Let us define Fo(1) =_ Fo(l, oJ) to be the Green's function that satisfies 

oJFo(l, co) + a[Fo(/+ 1, w) - 2Fo(l, oJ) + Fo(l - 1, 3)] = 3,,o (45) 

As is usual in scattering theory, this Green's function should represent an 
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outgoing wave propagating in both directions away from the origin. It is 
clear that  Fo(l)  exp(- ioJ t ) ,  with 

Fo(1) = [2ia sin k ] - i  e x p ( i k [ l  [) (46) 

has this property, while Fo(l)  is a solution of  (45). 
The standard formula for solving an inhomogeneous linear equation in 

terms of  the Green's function of  the homogeneous equation can be applied 
to (44) to yield 

F(I ,  o~) = ~ ~ [F( l l ,  co) + e x p ( i k l l ) l  
l '  

x (3v.~1+1 - 23v.zl + 3Val-1)Fo(/-  l', co) (47) 

the right-hand side of  (44) being the " inhomogeneous  term." Hence 

F ( l )  = [F(/1) + exp ( i k l l ) ]  

• a[Fo(l  - ll - 1) - 2 F o ( / -  11) + r o ( l  - ll + 1)] (48) 

which, in view of (45) becomes 

F(1)  = {F(/1) + exp(ikll)}{~z,~l - o J F o ( l -  ll)} (49) 

If  we let l = I1, we can find the unknown quantity F ( l l )  on the right-hand 
side of  (49). Then 

r(/1) + e x p ( i k l l )  = {exp( ik l l )} /OWo(O) 

so that  (43) and (49) yield 

ik!  i k l  
~b(l, t )  = e - '~~  e - e iFo( l  - l l)/Fo(O) if l # ll (50) 

�9 ( .e 'k ' l /wFo(O) if l = 11 

We can verify that  our model of a trap truly behaves like a trap by 
substituting (46) into (50) and considering the final formula for ~b(l, t) 
when l # li 

~b(/, t ) =  {exp[- i (wt  - k/)]}{1 - e x p [ i k ( l l  - /)] e x p ( i k [ l l  - /I)} 

= f 0  if  l > ll 
( { e x p [ - i ( w t  - k/)]}{1 - e x p [ - 2 i k ( 1 - / 1 ) ] }  if l < ll (51) 

Hence [~b(l, 0] 2 = 0, if l > 11, so that, as required, no wave passes the trap. 
Let us now consider the case of  two traps on a two-dimensional lattice, 

first investigating their influence on a point source disturbance and then on a 
plane wave. The unperturbed 2D equation analogous to (21) is, for lattice 
point (l, m), 

dKo(l ,  m ;  t )  
i d t  + ~ A2K~ r e ; t )  = i 3(t)3z,03m.o (52) 
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where 

A2f(l, m) = f ( l  + 1, m) -- 2f(l, rn) + f ( l  -- 1, m) 

+ f ( t ,  m + 1) - 2 f ( t ,  m )  + ] ' ( l ,  m - 1) (53)  

If  we follow the derivation of (32), we find that when there are two defects, 
one at/1 = (ll, ml) and the other at 12 -= (12, m2), 

dK(l, rn; t) ia A2K(I, re;t) 
dt 

2 

= ~(t)al,Oam, 0 --  i a  ~ g ( l B ,  roB; t )AB2(3z , , f im , , ,~ )  ( 5 4 )  
B=I 

where the subscript/3 on AB2 implies that the operator acts on (IB, mB) and 
not on the (l, m). Upon the taking of Laplace transforms and the introduction 
of the Green's function Ko(l, m;u) of the Laplace transform of Ko(l, re;t), 
with Ko(l, rn; t) being the solution of 

uKo(l, m; u) - is A2Ko(I, rn; u) = 3,.o~,~,o (55) 

we find the Laplace transform K(/, m; u) = K(/, m) to be given by [following 
(37)] 

2 

K(l, m) = ~ {3v,o~,~,.o - ~ i~K(lB, rnB) ABz3v.,fim,m,} 
l'm" $ =1 

x Ko(l - l', m - m') 

2 
= Ko(l, m) - is  ~ K(Ia, roB) AB2Ko(I - lB,m - rnB) (56) 

g = l  

We now abbreviate 1-= (l, m) and f ( l ,  m) ==-f(l) and employ the definition 
(55) of Ko(1) = Ko(l, m). Then (56) reduces to 

2 

K(I, u) = Ko(l, u) + ~ K(1 B, u){3,_,a.o - uKo(l - I~, u)} (57) 
B = I  

which, incidentally, applies to n defects if the upper limit 2 on the/3 summation 
is replaced by n. Equation (57) is clearly applicable to a 3D simple cubic lattice, 
if the vector 1 is given a third component. When we know the propagator 
Ko, we will have a closed expression for K(l, u) which contains only known 
functions. 

Let us successively let I in (57) be/1 and/2. Then we obtain the pair of 
inhomogeneous equations for K(ll ,  u) and K(12, u) 

uKo(O, u)K(I1, u) + uKo(ll - 12, u)K(12, u) = Ko(ll, u) 

uKo(12 - tl, u)K(tl, u) + uKo(O, u)K(12, u) = Ko(12, u) (58) 
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Then, if 

I Ko(O, u) Ko(ll - 12, u)[ (59a) 
• = Ko(12 - t l ,  u) Ko(O, u) 

1 Ko(ll,  u) Ko(ll - 12, u)[ (59b) 
uK( l l ,  u) = ~ Ko(12, u) Ko(0, u) 

1 I Ko(11, u) Ko(0, u) I (59c) 
uK(I2, u)  - -  -X~lKo(12, u) Ko(12 - 6 ,  u) 

If (59) is substituted into (57), it is found that if I # / 1  or 12 and if the origin 
of the walk is 1o rather than 0, then ( ~ -  ~ being the inverse Laplace transform 
operator) 

Ko( l - 1o, u) Ko( l - 6 ,  u) Ko( l - 12, u) I 
Ko(ll - 1o, u) Ko(0, u) Ko(l~ - 12, u)[ 

K ( !  - 10, t) = Le-~ Ko(/~ - 1o, u) Ko(12 - 1~, u) Ko(O, u) [ (59d) 
Ko(0, u) Ko( ll - 12, u) 
Ko(12 - 1~, u) Ko(O, u) 

An expansion of the determinants yields terms which can be identified with 
the diagrams indicated in Fig. 1. 

We proceed in essentially the same way to discuss the scattering of a 
plane wave by two traps. Our basic equation for the wave function 4~(/, t) is 

2 

d~b(l, t) /dt  - ia A2~b(l, t) = - i c ,  ~ ~b(l~) A~28,,, B (60) 
8 = 1  

t 

6 

Or, 0 
Ii 

Fig. 1. The diagrammatic interpretation of all the terms which appear in the scattering 
of a pulse by two absorbing centers. 
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Let us assume that if in the absence of traps our wave function is the plane 
wave 

~bo(l, t) = exp - i(oJt  - k. / )  (61a) 

with the dispersion relation (on a 3D simple cubic lattice) 

oJ = 2~(3 - cos kl - cos k2 - cos ka) (61b) 

then in the presence of traps it becomes 

~b(1, t) = [exp(-icot)] {exp(ik./) + F(I)} - [exp(-iwt)]~b(1) (62) 

When (62) is substituted into (60) we find that 
2 

oJF(l) + ~ A2F(1) = c~ ~ [F(I~) + exp(ik./)] AB23,,, a (63) 
B = I  

As usual, if we let Fo(l) be the Green's function solution of 

oJFo(l) + ~ A2Fo(1) = 3,.o (64) 

then 
2 

F(I) = ~ ~ ~ [F(Ia) + exp(ik . lB]Fo(i-  I~)AB28,,,~ 
Z B=I 

2 

= c~ ~ [F(IB) + exp(ik./B] Aa2Fo(I- IB) (65) 
B = I  

However, in view of (62) and noting that 

c~ AaaF0(l-  I,) = 8,,,a - coFo(l-  la) 

we have 
2 

~(l) = exp(ik.l) + ~ r -- oJFo(l-  IB)} (66) 
B = l  

If  I # /1 , /2 ,  then 

~(l) = exp(ik.l) - ~ ~(lB)Fo(i-  IB) (67) 

Now let I be successively/1 and 12 in Eq. (67). The two resulting equations 
can be solved for ~(11) and ~(12). When these results are substituted into 
(67) the final expression obtained for ~b(l) is, for I r  12, 

exp i k . l  F o ( l -  11, ~o) F o ( l -  12, oJ)[ 

exp ik.l~ Fo(O, oJ) fo(ll  - 1 2 ,  o~) 
exp ik.12 Fo(12 - I~, oJ) Fo(O, ~o) 

~(l) = Fo(O, ,o) Fo(ll - 12, w) (68) 

go(12 - i~, oJ) ro(O, co) 

The structure of this determinant is clearly very similar to (59d). 
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In the case of n isolated, perfectly absorbing traps our basic propagation 
equations are (57) and (67) with the upper limit 2 on the /3 summation 
replace by n. Then, if we successively let 1 = 1~, 12,..., 1,, we obtain n linear 
equations analogous to (58). These equations for either K ( l j ,  u) or ~b(lj) have 
solutions, which are ratios of determinants. When these are substituted into 
the generalization of (57) or (67) we obtain an object of the form 

W ( I )  = D , / A , ,  (69) 

where 

D,  = det k ,  B with a, fi = O, 1, 2 .... (70a) 

and n is a similar determinant with the left column and top row reversed 

A, = det k,B with a, 13 = 1, 2,..., n (70b) 

The W ( I )  and k~a have the following form for the point source scattering 
problem: 

W ( I )  = K ( l  - lo, u), koo =- K o ( l  - Io, u) (71a) 

koB - Ko(l - la, u), kBo - Ko(la - to, u), /3 > 0 (71b) 

k~B = K( I~  - IB, u), a,/3 = 1,2,..., n (71c) 

For  the scattering of a plane wave the W ( l )  and k,a are 

W ( 1 )  - $(1),  koo - exp(ik. l)  (72a) 

k,~a --  Fo( l  - la, r kao - e x p ( i k . l a )  , /3 > 0 (72b) 

k~,B - Fo(l,~ - la, r a, fl > 0 (72c) 

The resulting generalization of (68) given by (69) with the above definitions 
of terms represents all possible ways energy in the bear incident on the 
traps can be depleted by trapping before it propagates away from the traps. 
While the solution of the scattering problem has been reduced to quadratures, 
numerical estimates of depletion and scattering depend on calculations of 
the lattice Green's functions Fo(l ,  r Those functions are discussed in detail 
in Section 5. 

4. ON THE EFFECT OF A B N O R M A L  B O N D S  IN THE 
LATTICE M O D E L  

A more general type of abnormality will now be considered and analyzed 
in the same manner in which we analyzed the effect of traps. The medium 
described by our basic model equation (21) is characterized by the parameter 
c~. If  the medium is not homogeneous it may suffer inhomogeneities (which 
become scattering centers) in the way in which one lattice point is connected 
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to another. A one-dimensional inhomogeneous chain might be characterized 
by a set of numbers c,z+l,z such that the basic equation for the irregular 
system would have the form 

z-----d-~--" dK(l ,  t)  + eq+ I.t[K(I + 1, t)  - K(I,  t)] 

- az,z-z[K(l, t) - K ( I  - 1, t)] = i 3(t)3,,o (73) 

which would reduce to (21) if '~z+z,z = c, for all L An alternative form for 
(73) is 

aK(t, t) i ~ F c ( / +  1, t) - 2/c(l, t) + K ( / -  1, t)] 
at 

= i,{,~+z.~[K(l + 1, t)  - K(I,  t)] 

- ,,,~_I[K(/, t)  - K( I  - 1, t)]} + 8(t)3~,o (74) 

where 

,,+l,z---- ( -~+1, ,  - ~ ) / -  (75 )  

and the right-hand side of (74) can be considered to contain the influence of a 
scattering potential. We again start our discussion with an investigation of 
the propagation of an instantaneous pulse source initially at the origin. 

As in Section 3 we take Laplace transforms and define Ko(l, u) by (36). 
It is the Green's function associated with a perfect lattice model. Then 
K(I, u) can be expressed in terms of Ko(l, u) in a manner analogous to that 
discussed in Section 3. The analog of (37) is [with K(I )  = K(I,  u)] 

K(I, u) = ~ {8,,,o + c~ir + 1) - K(I')] 

- i ~ , , , . z , _ ~ [ K ( / ' )  - K ( l '  - 1 ) ] ) K o ( t -  13  

= Ko(l, u) + i ~  ~r + 1) - K(I')] (76a) 
l '  

x [Ko( / -  l ')  - Ko(1 - l '  - 1)1 

= Ko(l, u) + i ~  ,~r u ) P o ( l -  l '  - 1, u) (76b) 
Z" 

where we define 

P(I,  u) -- K ( I  + 1, u) - K(I,  u) (77) 

An equation can also be found for P(I, u). From (76a) 

P(t, u) = eo(l, u) + i z ~,,,+l,z,P(l', ~) 
l" 

x [Ko( / -  l '  + 1, u) - 2Ko( / -  l', u) + Ko(l - l" - 1, u)] 

= Po(l, u) + ~ ,,,+l,z,P(l, u)[uKo(l - l', u) - 3,,,,l (78) 
l" 
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Let  us first consider the case of  two "defec t ive"  bonds, i.e., 

Ev+l,v = 8v,l~el + 3t,,heg. 

and successively let l in Eq. (78) be l~ and 12. Then, if we also let 

%- = 1 + ~j 

we have 

(79) 

and from (46) 

G q )  Po(tO eoq~.) t~l 
K(I ,  u) = A ;  x i a e i e o ( l -  11 - 1) u,~Ko(O) - al  u, lKo(12 - 

i~,sPo(l 15 1)  u,2Ko(ll- 12) u,lKo(O) 
with 

A5 = u%Ko( l l  15) u % K o ( O ) -  (81b) 

One can easily combine the methods of  the last section with the model  
discussed above to find the wave function of  a plain wave scattered by our  
pair  of  abnormal  bonds characterized by (79). If  the incident wave function 
in the absence of  the scatterer is 

~bo(l, t) = exp - i (oJ t  - k l )  (82) 

then that  of  the wave function in presence of  the scatterer becomes 

~b(l, t) = ~b(l) exp - i~ot 

with 

e 'k'z ( i -  e~)e~k~l ( i -  e~k)emZ2 ] 

~b(l) = A s  ~ ,~ , lQo( l  - ll - 1) to,lFo(0) - ~1 r - lO (83a) 

~,2Qo(/ t5 1) o ,2 roq l  - is) o~,sgo(0) - ~ 2  

We have used the abbreviations 

I A2 = o~%Fo(l~ - 12) w%Fs(O)  - (83b) 

Qo(l )  = Fo(l  + 1) - Fo(l)  (83c) 

Fo(l)  = (2i~ sin k )  -1  e x p ( i k l l [ )  

The similarity of  (83a) to (81a) is clear. 

(81a) 

(83d) 

-eo(11) = Pq0tu~lKo(0) - ~1] + e(t2)u~sKoql - 12) (80a) 

-Po(12 )  = P(IOuEIKo(15 - l l )  + P( l s ) [u%Ko(O)  - %1 (80b) 

I f  we solve for P ( I O  = P ( ( l l ,  u) and P ( l s )  and substitute the resulting ex- 
pressions into (76b) when l '  runs through ll and 12, we find 
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These results can be extended easily to two- and three-dimensional  
lattices and to n unusual  bonds. Since the equat ions are slightly shorter  in 
the 2D case than in the 3D case, we will consider that  case first and since the 
generalization f rom two to three dimensions will be obvious,  we will merely 
exhibit final 3D formulas.  I f  we define a typical lattice point  on a 2D lattice 
to be l = (/, m), then the basic equat ion analogous to (74) for  a point  source 
excitation is 

dK(1) /d t  - ia A2K(I) - ~(t)~.oSm,o 

= ia{E(i + i, l)[K(1 + i )  - K ( I ) ]  - r  i ) [ K ( l )  - K ( I -  i)] 

+ E(I + j, I ) [K( I  + j) - K(I ) ]  - ~(1 - j ) [K(I)  - K ( I  - j)]} (84) 

where 

i = (l, m), i -= (1, 0), j -= (0, 1), i + i = (l + 1, m), etc. 

and the e's are defined to be 

E(! + i, 1) = { ~ ( I  + i, 1) - c~}/c~ ( 8 5 )  

, ( I  + j, 1) = {c~(! + j, 1) - c~}/c~ (86) 

the first being associated with the deviation f rom c~ of  the bond pa rame te r  
associated with the horizontal  bond  connecting (I + l, m) to (/, m). The 
second is a typical deviation associated with an unusual  vertical bond.  

The  2D generalization of  Eq. (76b) is 

K ( I )  = Ko(l)  + i~ ~ (r + i, l ' )G l ( l ' )Go( !  - 1' - i) 
l '  

+ ,(1' + j, I ' )G~(I ')Go2(I - 1' - j)} (87) 

where we have now to define two functions analogous to the P ( L  u) of  (77). 
They  are 

GI(I)  =- K ( !  + i, u) - K(I ,  u) (88a) 

G2(I) =- K ( I  + j, u) - K ( i ,  u) (88b) 

the first being associated with the horizontal  bond connect ing (l + 1, m) to 
(/, m) and the second with the vertical bond connecting (/, m + 1) to (/, m). 
Our  final formulas  will be considerably condensed if we introduce a matr ix  

r (1 )  = F ~ ( l )  F12(1) (89) 
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whose components  are 

Fn(1)  - GI(I)  - G~(l - i) = Ko(l  + i) - 2K0(l) + K o ( l -  i) (90a) 

FI2(I)  - Go~(l) - G o ~ ( l -  j) 

= Ko(!  + i) - Ko(l)  - Ko( l  + i - j) + Ko(l  - j) (90b) 

F21(l) = Go2(l) - G o 2 ( l -  i) 

= Ko(i  + j) - Ko(l)  - Ko(i  - i + j) + Ko(t  - i) (90c) 

F22(1) = 602(0  - Go2(t - j) = Ko(l + j) - 2Ko(/) + Ko(l - j) (90d) 

When the nonvanishing E's which correspond to unusual bonds are 
prescribed one will need to find the appropriate G 1 and G ~ to be substituted 
into (87) in order to give a final closed form to the propagator  K(/, m). To  
this end we obtain f rom (87) and the definitions (88a) and (88b) two basic 
equations to be used for determining the G's: 

GI(I)  - Go~(l) = ia ~ {E(I' + i, l ' ) G l ( l ' ) F l l ( 1 -  l ' )  

+ E(r + j, l ' )6~(r )F~( l  - l')} (91a) 

G2(I) - G02(l) = ic~ ~ {E(I' + i, l ' ) G 2 ( l ' ) F ~ 2 ( ! -  1') 

E(l' + j, l ')a~(r)F2~(t - / ' ) }  (91b) 
Let us now consider the case of  two abnormal  bonds, one horizontal  

and one vertical, so that  

~(1 + i, I) = q 3,,,1 a n d  ~(! + j, 1) = E2 3,,,~ (92)  

Then, f rom (91) 

GI(I~) = Go(l~) + i~[qF~(O)G~(l~)  + ~2F~2(1~ - 12)G2(12)] (93a) 

G2(I~) = Go(l~) + i~[~F2~(12 - ll)G~(I~) + E2F22(O)G2(12)] (93b) 

This pair o f  equations can be solved for G~(l~) and G2(12). When the resulting 
expressions are introduced into 

K(1) = Ko(l)  + i a q G ~ ( l l ) G o ~ ( l -  1~ - i) + i~ ,2G2(12)Go2( l -  Ii - j) (94) 

[Eq. (87) incorporat ing (92)], it is found that 

Ko(l)  GoZ(l~) Go2(12) ] 

K( l ,  u) = As a i q G o ~ ( l -  11 - i) ~ i q F ~ ( O )  - 1 ~iqF2~(12 - /1)] (95) 

a i r  12 j) a i e 2 F a 2 ( l ~  - 12) e d % F ~ z ( O )  1 

We have used the vector notat ion 

l=(l,m), i - (1, O), j - :  0 , 1 )  

air ) - -  1 a i q F ~ ( l ~  - 1~) 

~x2 = ~i~F~(t~ t~) ,~i%F~(O) 1 
(96) 
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Similar  equat ions  exist fo r  the wave func t ion  o f  a p lane  wave scat tered 
by  unusua l  bonds .  We  start  with the basic wave equa t ion  

d r  - ia  A2r 

= ia{e( l  + i, l)[~b(l + i) - ~b(l)] - ~ ( 1 -  i, ! ) [ r  - r  i ) ]  

+ E(l + j, i)[~(1 + j) -- r  -- ~(1 -- j, 1)[r -- r -- j)]} (97) 

I f  we let 

•(/) --- [ e x p ( -  ioo t )J fexp( ik . l )  + F( I ) ]  (98) 

we obta in  the fo l lowing  equa t ion  for  F ( I ) :  

oJF(l) + c~ A2F(1) 

= -~ , (exp i k . t ) { , ( l  + i , / ) (1  - exp ikx)  - , ( l  - i, 1)(1 - exp - ikx)  

+ e ( / +  j, 1 ) ( -  1 + exp ik,:) - e( l  - j, 1)(1 - exp - ikx)} 

- ~,{~(t + i , / ) I F ( / +  i) - F ( l ) l  - , ( t  - i ,  I ) [ F ( I )  - F ( I  - i )]  

+ , ( t  + j, t )[F(t  + j )  - F ( t ) ]  - , ( t  - j ,  t ) [ F ( t )  - F ( t  - j )]} (99)  

so that  if Fo(l)  is the Green ' s  func t ion  that  satisfies 

then  

F ( I )  = 
i" 

X 

+ 

X 

+ 

+ 

, .oFoq) + ~, ~X~fo(t)  = ~,.o 

{e(l' + i, l ' ) (exp ik . l ) (1  - exp ikx)  

I F 0 ( / -  r )  - F o ( t -  r - i)j 

e( l '  + j, l ' ) ( exp  ik . l ) ( 1  - exp i k v )  

[Fo(! - 1')  - F o ( !  - 1'  - j)] 

~(1'  + i, l ' ) [ r ( l '  + i) - g ( l ' ) ] [ F o ( l -  l ' )  - F o ( l -  l '  - i)] 

, ( l '  + j ,  r ) [ F ( l '  + j) - g ( r ) ] [ F o ( t  - r )  - F o ( t  - r - j)]} 

( lOO) 

( l O l )  

N o w  suppose  that  there are n defective bonds  associa ted with lattice 
points  I t ,  la .... , !~ in vec tor  direct ions Jl ,  J2 .... , j .  and  tha t  the E values o f  the 
bonds  are q ,  22 ..... E.. T h e n  (101) can be wri t ten as 

F ( l )  = a ~ ~B (exp ik . le) (1  - exp ik.j~) 
8 = 1  

• [ F o q  - 1,0 - F o ( t -  i,~ - j ~ ) ]  

- a ~ ,~[F(/e  + j~) - F ( l e ) ] [ F o ( I  - IB) - F o ( ! -  le  - je)] (102) 
B = I  
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The vector  JB is equal to i if the fith defect bond  is horizontal  and j if it is 
vertical. Also k.j~ = kx if j~ = i and k~ if Ja = J. 

We also find that  

F(I~ + j~) - F(Ir) 

= ~ ~ "B (exp ik.la)(1 - exp ik.je)Uj,j~(lra ) 

+ a ~.. ea[F(1 a + Ja) - F(la)]Uy,ja(lra) (103) 
B 

where Ira = I v - l a and 

U,k(l) = Fo(1 + j )  - Fo(l - ] + k) - Fo(l) + Fo(l - k) (104) 

Since the Green ' s  functions Fo(l) are postulated to be known,  the 
function F(l) will also be known if the values of  

F(tB + Ja) -- F(IB) =- Ha (105) 

can be determined in terms of  the Fo(l). This can be accomplished by noting 
that  (103) is a set of  linear equations for  just  these variables. I f  we define 

Wy(t~) = a ~ e, (exp ik.j~)(1 - exp ik.jB)Uj~jB(lya) (106) 

then (103) bcomes 

W~(l~) = ~ k~aH a (107) 
# = l  

where we have set (with ~,,/3 = 1, 2 ..... n) 

k~B =-- aeBUj,,,e(l~a ) + 3rB (108) 

Then 

W1(11) klz "'" kl,~ I Ikll klz "'" kl,q 

n~ = W2(I~): k22 ... k2,~ k21!,~ k22 ... k,~,~k2'~ (109) 

w.( t . )  k.~ ... k . .  k~ k.~ . . .  

etc. When  these expressions are substituted into (102) it is found that  

r ( l )  = D,/An (110) 

where 

too k lo .. k~01 i ~  k~ .. k.~ I 
~o--~? ~ " ~ . _  A~ Ik! ~ k2~ "'" k~l (111) 

ann ~ ko, k l ,  "'" k ~ k2, "" k~, 

with kTa being defined by (108) when ~,/3 = 1, 2,..., n, and w i t h j  = 1, 2 , . . ,  n, 

kjo = Wj(lj) and ko~ = aeaH(1,/3) (112) 
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where 

H ( l ,  fl) = [ F ( I -  IB) --  F ( I -  1B - JB)] 

koo - ~ ~ eB(exp ik.lB)(1 - exp ik.j~) 

x [ g 0 ( l -  1~) - F ( I -  1B - JB)] 
While the derivation of (110) was for a two-dimensional lattice the 

result is also correct for a three-dimensional one. In that case, the unit 
vectors JB may be i, j, or k, depending on the direction of the/3th unusual 
bond. The vector ! has three components ! =- (/i, 12,/3). Also k.jB = kx if 
b = i, k~ if JB = J, and k~ if JB = k. The Green's function Fo(l) defined by 
(I00) is a three-dimensional one and the Az is to be interpreted as the three- 
dimensional Laplace difference operator. 

We have thus reduced the calculation of the scattered component of 
the wave function F(I )  to quadratures. However, detailed numerical work 
requires formulas for the Green's function Fo(l). We now proceed to develop 
some of these. 

5. REMARKS ON THE LATTICE GREEN'S FUNCTION 

The wave function of a wave scattered by unusual regions (bonds or 
points) in a periodic lattice space through which waves may propagate has 
been expressed as a ratio of two determinants. If the individual determinants 
in (109) are expanded in powers of an E which measures the deviation of the 
bond parameters of unusual bonds from normal ones, the resulting expression 
for the scattered wave functions is a ratio of two polynomials in E, a form 
which is often postulated when the method of Pad6 approximants is used. 

While our formula for the scattered wave function has been reduced to 
quadratures, actual numerical calculations using the formula require expres- 
sions for the lattice Green's functions. Such Green's functions have been 
vigorously studied in recent years since they occupy a basic position in solid 
state theory. In this section we collect a number of relevant properties of 
the Green's functions Fo(l, w) and Ko(l, u) defined by (100), (45), (36), and 
(ss). 

The scattered wave Green's function, (exp-io~t)Fo(l ,  ~o), defined so 
that in one dimension Fo(l) satisfies (45) and in three dimensions satisfies 
(lOO), 

wFo(l, o~) + cz A2Fo(I , w) = 3,,o (113) 

must, at points l far from the origin, have the form of outgoing waves 
receding in all directions from the origin. Hence, one should have 

(exp - iw t )Fo( l ,  oJ) ~ - - -~gl(k)exp[-i(wt - ki l l )  1D (114) 
[ .ga(k) l l l - lexp[- i (oJt  - klll)] 3 0  
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where g~(k) and ga(k) are functions which might  depend on k but  which for  
large Ill must  be independent  o f  I i[. 

The  function 

1 f "  exp(il~) d~ 
Fo(l) = ~ J_= oJ + ie - 2~(1 - cos q~) (1 15) 

as E --> 0 satisfies (45) if 

Since 

o~ = 2c~(1 - cos k) (116) 

Fo( l) = Fo( -  l) (117) 

we need only consider the case 1/> 0. We now show that  the fo rm (115) when 
multiplied by exp ( - i o~ t )  represents an outgoing wave. Let  Zo = exp i~. 
Then  (C being a counterclockwise unit  circle contour)  

1 fc  z~dz (118) 
Fo(l) = ~ z 2 -  Z(Zo + Zo 1 - 2ie) + 1 

The  poles of  the integrand, when l >/ 0, are at 

z~ = zg~{1 T- (E/sin k) + O(e2)} (119) 

Hence z+ lies inside the contour  i f0  < k < = and z_ lies outsize. Then f rom 
the theory of  residues 

Fo(1) = e'~t/(2i~ sin k) if l > 0 (120a) 

F r o m  (117) 

Fo(l) = e~m/(2i~ sin k) for  all real integral l (120b) 

which is consistent with (114) if g~(k) = (2i~ sin k ) - L  
We now show, as e --> 0 (with cj - cos lj) that  the function 

l f f f  exp(i l . , )dadp (121) 
Fo(1) = ~ oJ + ie - 2a(3 - el - c2 - ca) 

which satisfies (113) and has the required fo rm (114). Note  also that  since (2'16~ 

;o x -  ~ = exp - xz  dz (122) 

then 

lfo  Fo(1) = ~ e x p [ - z ( E  - i~o)] dz 

x exp{i[ljq~j - 2~z(1 - ej)]} dlj 
j = l  n 

(123) 
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This function can be reduced to a single integral by using the integral rep- 
resentation of  the Bessel function 

2rrizJ t (y)  = e ~~176 cos 14, d4, (124) 

One then obtains 

Fo(1) = izl+z2+~a-Z J,~(2az)J ,~(2az)J ,3(2az)e  - ~ ' - ' ~ - 6 " J ~  dz  (125) 

When the lj are very large there is some merit  in introducing a lattice 
spacing into our  model by writing a = A/a 2, for  then in the limit a -+ 0, Eq. 
(21) becomes the Schr6dinger equation. When the lj are large the integrands 
of  the 4' integrals of  (123) oscillate rapidly except when [~] is very small. 
Hence we can use the approximat ion 

e x p [ - 2 a z i ( 1  - e)] -,~ exp[ - i az (4 ,  2 - _~_4,4 + ...)] (126) 

Then a typical one of  our  required integrals in (123) becomes 

f " e x p { - i [ z h ( q ~ / a )  z - la(qb/a) - za2(4,/a) 4 +- . . ] }  d4, (127) 
-g  

Now we introduce a fixed length r with 

r = a t  and set (4,/a) -= x (128) 

I f  a is made small and I large, keeping r fixed, then (127) becomes 
f ~rl a 

a e x p [ - i ( z ~ t x  2 - r x  - z a 2 x  4 +- - . ) ]  d x  (129) 
- ~la 

Hence as a becomes very small the limits of  integration can be made ( -  0% oo) 
and all terms of  order  x 4 and greater can be neglected in the integrand. On 
this basis, with 

r 2 - a2(ll  2 + 122 + la 2) =- a212 (130) 

Eq. (t27) becomes 

f :  e x p [ - i ( z A x  - rx)]  d x  
o o  

= a(~ /Az )  zl2 exp(-�88 + i r2 /hz )  (131) 

Then, if we rewrite c~ = A/a 2, (123) becomes 

Fo(l )  ~ [exp( - �88  3/2] 

x z -3~ exp{i[z(co + ie)  + (r2/,~z)]} dz  

= (8~l~)-1 exp[2i l (~o/@12] (132) 

which is o f  the required form (114). 
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Rays that propagate f rom the scattering region to a distant point  of  
observation correspond to large l, for  which (132) is valid. Rays that represent 
internal scattering between unusual bonds would correspond to small 1 
values. The function Fo(0) which is found in scattering formulas such as 
(69) and (110) was first tabulated by Koster  and Slater. (2) A more extensive 
table has been prepared by Joyce. (15) The symmetries of  our  problem tell us 
that  

Fo(0, 0, + 1) = Fo(0, + 1, 0) = F0(_+ 1, 0, 0) (133) 

These furictions can in turn be found from Fo(0, 0, 0) by using the recurrence 
formula  

ro(1, 0, 0) = [1 - (co - 6a)Fo(0, 0, 0)]/6a (134) 

The general recurrence formula (113) is useful for calculating Fo(l) f rom 
diagonal Fo's such as Fo(s, s, s).  

Certain series expansions for products of  Bessel functions expedite <1~ 
the derivation of  formulas for  Fo(l) for  l values too small for  the application 
of  (132). For  example, the series 

( -  1)k(/z § v + 2k)l (�89 u+v+2~ 
d~(z) J~(z) 

yields 

i,,+,~+~ _ ~ ~ J,(~ ( -  1)~(t, + z~ + 2k)! (,~z)'i+'~+~%(2~,z)e -~  d~ 
Fo(I) 

=o o (l~ + 12 + k)!  (ll + k)!  (12 + k)!  k!  

(136) 

with 

7 = ~ - i(co - 6~) (!36a) 

Since 

e - ' ~ J , ( ~ x ) x  ~-~ dx = 6, ~ + ~ ) - ~ r ( a  + s )P ; J~b , (y  ~ + ~ ) - ~ 1  
6 

then 

Fo(l) = iq +L2+z~ -1 

( _  1)~(11+12+2k)!(11+1 J_1 .a_'~t.'~vo&+t2+2ko-z3 2~(v) t 2 ! t 3 ! ~ t , ~ j  �9 at l l  + 12 + 

k = o k ! ( l l  + 12 + k) !(l~ + k) !(12 + k) t [4a 2 - (w - 6a)211'2(l 1 + 12 + 2k  + 1) 

with 

-= 7 I ( 7  ~ + / 3 ~ ) ~  = [ (6~  - o~)~/(8~ - oJ) (4a - ~o)] ~I2 

(137) 
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and PSi(v) is an associated Legendre function of the first kind. Other 
expansion forms are also available for the computation of Fo(l). The bases 
of these are discussed in Ref. 10. 

When the Green's functions needed for the calculation of the scattered 
wave function involve a number of vectors ( l l , /2, /3)  it seems to be most 
efficient to use (137) or an alternative formula to calculate the minimum set 
Fo(l,l,l) required to obtain, using the recurrence formula (113), the 
Fo(ll, 12,/3) for the required vectors. 

6. C O N C L U S I O N S  

We have investigated the theory of propagation of waves in a periodic 
lattice space which contains limited regions of traps or unusual bonds 
between lattice points. Generally the scattered wave function is a ratio of 
determinants with the number of rows and columns being of the order of the 
number of unusual points or bonds. The elements of the determinants are 
related to lattice Green's functions for which formulas and tables exist. The 
detailed application of the formulas to a number of special scattering prob- 
lems will be given in related publications. 

Let us now consider the connection between our expression for the 
scattered wave function as a ratio of determinants and various other formula- 
tions of scattering theory. 

First imagine taking the limit as the number of defective lattice bonds in 
the interior of the scattering region approaches infinity while the lattice 
spacing a approaches zero. This corresponds to proceeding to the continuum 
limit of our model. In that case the original scattering process would have 
been described by an integral equation and our ratio of determinants (which 
now become infinite determinants) would be equivalent to the Fredholm 
determinant solution of the scattering integral equation. While this form of 
scattering theory was discussed by Jost and Pais (lv~ many years ago, it is 
seldom applied to specific problems. 

If the ratio of the determinants (110) is expanded in powers of Ej and 
all terms of second or higher order are neglected, the result corresponds to 
the Born approximation. 

When many wavelengths of the incident wave fit into the range of the 
scatterer the determinants in (110) become large so that our method is not 
particularly efficient. However, if the ej are small while the range of the 
potential is large, the eikonal approximation is suitable for the discussion 
of the scattering problem. In another publication we will introduce exponential 
generating functions for determinants and from them derive the discrete 
analog of the eikonal approximation. This will represent a certain approxima- 
tion to large determinants. 
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Discrete analogs of Maxwell 's  equations,  the Dirac equation,  and the 
wave equat ion for sound propagat ion can be derived. These will be used 
in other reports to investigate the scattering of light, electrons, and sound by 
certain models of scattering centers as well as by surfaces. 
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